Active Learning for Graph Embedding

نویسندگان

  • HongYun Cai
  • Vincent Wenchen Zheng
  • Kevin Chen-Chuan Chang
چکیده

Graph embedding provides an ecient solution for graph analysis by converting the graph into a low-dimensional space which preserves the structure information. In contrast to the graph structure data, the i.i.d. node embeddings can be processed eciently in terms of both time and space. Current semi-supervised graph embedding algorithms assume the labelled nodes are given, which may not be always true in the real world. While manually label all training data is inapplicable, how to select the subset of training data to label so as to maximize the graph analysis task performance is of great importance. Œis motivates our proposed active graph embedding (AGE) framework, in which we design a general active learning query strategy for any semi-supervised graph embedding algorithm. AGE selects the most informative nodes as the training labelled nodes based on the graphical information (i.e., node centrality) as well as the learnt node embedding (i.e., node classi€cation uncertainty and node embedding representativeness). Di‚erent query criteria are combined with the time-sensitive parameters which shi‰ the focus from graph based query criteria to embedding based criteria as the learning progresses. Experiments have been conducted on three public datasets and the results veri€ed the effectiveness of each component of our query strategy and the power of combining them using time-sensitive parameters. Our code is available online1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Semi-Supervised Graph Embedding Scheme with Active Learning (SSGEAL): Classifying High Dimensional Biomedical Data

In this paper, we present a new dimensionality reduction (DR) method (SSGEAL) which integrates Graph Embedding (GE) with semi-supervised and active learning to provide a low dimensional data representation that allows for better class separation. Unsupervised DR methods such as Principal Component Analysis and GE have previously been applied to the classification of high dimensional biomedical ...

متن کامل

Batch Mode Active Learning with Hierarchical-Structured Embedded Variance

We consider the problem of active learning when the categories are represented as a tree with leaf nodes as outputs and internal nodes as clusters of the outputs at multiple granularity. Recent work has improved the traditional techniques by moving beyond ”flat” structure through incorporation of the label hierarchy into the uncertainty measure. However, these methods have two major limitations...

متن کامل

V2V: Vector Embedding of a Graph and Applications

We present V2V, a method for embedding each vertex in a graph as a vector in a fixed dimensional space. Inspired by methods for word embedding such as word2vec, a vertex embedding is computed through enumerating random walks in the graph, and using the resulting vertex sequences to provide the context for each vertex. This embedding allows one to use well-developed techniques from machine learn...

متن کامل

On Generalizing Neural Node Embedding Methods to Multi-Network Problems

Representation learning has attracted significant interest in the community and has been shown to be successful in tasks involving one graph, such as link prediction and node classification. In this paper, we conduct an empirical study of two leading deep learning based node embedding methods, node2vec and SDNE, to examine their suitability for problems that involvemultiple graphs. Although the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.05085  شماره 

صفحات  -

تاریخ انتشار 2017